Automatic Noise Identification in Images using Statistical Features
نویسنده
چکیده
Noises are unwanted information which will be normally present in an image. It should be removed in such a way that the important information present in an image is preserved. De-noising an image is very active research area in image processing. There are several algorithms for de-noise but each algorithm has its own assumptions, advantages and limitations. The method proposed in this paper uses a simple pattern classification for noise identification. The significant idea is to obtain the noise samples and to extract their statistical feature for identifying the noise type. Simple image filters are used to get the noise samples and noise identification is achieved by using few statistical features. The method is capable of accurately classifying the type of noise besides the type of images used.
منابع مشابه
Image Stitching of the Computed Radiology images Using a Pixel-Based Approach
In this paper, a method for automatic stitching of radiology images based on pixel features has been presented. In this method, according to the smooth texture of radiological images and in order to increase the number of the extracted features after quality enhancement of initial radiology images, 45 degree isotropic mask is applied to each radiology image to observe the image details. After t...
متن کاملAutomatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملAutomatic Detection of Microaneurysms in Color Fundus Images using a Local Radon Transform Method
Introduction: Diabetic retinopathy (DR) is one of the most serious and most frequent eye diseases in the world and the most common cause of blindness in adults between 20 and 60 years of age. Following 15 years of diabetes, about 2% of the diabetic patients are blind and 10% suffer from vision impairment due to DR complications. This paper addresses the automatic detection of microaneurysms (MA...
متن کاملPerformance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching
Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...
متن کاملAircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کامل